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An analytical algorithm for the calculation of molecular volume based on a model of par-
tially overlapping spheres is presented. The algorithm takes into account the volume of over-
lapping caps of spheres and includes the contribution to the molecular volume by interstitial
voids. The algorithm is constructed in a manner to ensure generality. The working of the
algorithm is illustrated by examples of some different types of basic molecular structures. The
Mathematica program is available.

1. Introduction

Molecular volumes have been applied to many different disciplines within the
chemical sciences [1]. For example, molecular volumes have been used for packing
predictions in crystallography [2–5], protein cavity evaluation [6], charge density esti-
mates [7], topological analysis of biologically important molecules [8], materials chem-
istry [9] and quantification of chirality [10]. More recently molecular volumes have
found extensive use in quantitative structure–activity relationships (QSAR). A recent re-
view summarizes the use of molecular volumes in organometallic chemistry [11]. How-
ever, most, if not all, of the above studies have used a numerical approach to calculate
molecular volumes.
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The history of the calculation of molecular volumes is interesting [12]. Two ap-
proaches were favoured: calculation of minimum or maximum volume. In the latter
interstitial voids are assumed to contribute to the molecular volume whereas in the for-
mer they do not. In 1975 an attempt was made to calculate analytically the molecular
volume for spherical and pseudospherical molecules [13]. Various terms were added to
the equation to take care of the volume of the solvent cage. However, the method re-
mained limited to spherically shaped molecules. An interesting numerical approach was
proposed in 1979: overlapping volume analysis (OVA) [14–17]. The method involved
circumscribing the molecule by a parallelepiped and then examining all the points within
the parallelepiped to determine whether they were within or without the molecule. The
numerical algorithm for the calculation of molecular volumes of choice was proposed
by Gavezzotti in 1983 [18]. This paper addressed, in a numerical fashion, the shortcom-
ings of the prior analytical method of Bondi [19]. In this paper we present the analytical
approach to these shortcomings.

The model we use is that of an assemblage of spheres which may have overlap with
neighbouring spheres. We assume that the radius of each sphere is known and that the
locations of the centres of all spheres are known with respect to some laboratory frame.
There areN spheres labelledSi, i = 1, . . . , N with centresPi, i = 1, . . . , N . Cartesian
coordinates in the laboratory frame are denoted by capital letters so that the centre ofSi,
Pi , is the point(Xi, Yi, Zi). We also use local coordinate systems for which lower case
letters are used to denote the Cartesian coordinates of a point as(x, y, z).

The first part of the algorithm separates the constituent atoms into classes, viz.
those which have no overlap with any other atom and no voids (conceivably the null
set), those which overlap pairwise, those which have triple overlap and so forth, those
which are arranged in such a way as to give rise to pseudotetrahedral voids and those
arranged in such a way as to give rise to pseudooctahedral voids. Were one dealing with
geometrical spheres, one would have to allow for overlap of anything up toN spheres or
even inclusion. However, we are using the spheres to aid in the modeling of molecules
and so we ignore higher overlap (more than eight overlapping spheres) and inclusion. In
the pairwise overlap we can include chains of atoms with nearest neighbour overlap.

We then consider the contributions to the total volume from each of the classes
enumerated above and develop formulae to account for the regions of overlap. Equipped
with these formulae we present the second part of the algorithm which computes the
volume of the molecule.

2. Enumeration of the overlap classes

The spheres are labelledSi, i = 1, . . . , N . Commencing withS1 we determine
the existence of overlap with any of the other spheresSj , j = 2, . . . , N . We then pass
on to S2 and so on. The general procedure is as follows. Consider a sphereSi with
centrePi (Xi, Yi, Zi) and radiusRi. Then each sphereSj , j = i + 1, . . . , N with cen-
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trePj (Xj , Yj , Zj ) and radiusRj is tested for overlap. The test consists of the calculation
of the separation ofPi andPj , viz.

dij =
√[

(Xi −Xj )2+ (Yi − Yj )2+ (Zi − Zj )2
]
, (2.1)

and then

sij = dij − Ri − Rj . (2.2)

If sij � 0, there is no overlap and the next sphere can be considered for comparison.
If sij < 0, there is overlap. All those pairs of atoms which register overlap are

recorded. If spheresSi andSj show overlap throughsij < 0, triple overlap with sphere
Sk with attributesPk (Xk, Yk, Zk) occurs ifsik < 0 andsjk < 0. This information is
already known and it is merely a matter of identifying those spheres which do have
triple overlap. The set of spheres with triple overlap is tested for quadruple overlap. In
turn this set is tested for quintuple overlap. The process continues until the null set of
n-tuple overlap is reached. The maximum value ofn which we consider is eight.

On chemical/physical grounds complete overlap or inclusion cannot occur. This
pathological case is identified by

sij < −max(Ri, Rj ). (2.3)

Since a result (2.3) would not be expected from physically realistic data, this test would
be useful to include if there were any doubts about the validity of the input data.

3. The volume elements

3.1. Single spheres

For the sake of completeness we state the obvious and elementary result that an
isolated sphere,Si at Pi (Xi, Yi, Zi), i.e. one with no overlap, contributes

Vi = 4

3
πR3

i . (3.1)

3.2. Pairwise overlap

Two spheresSi and Sj with centres atPi (Xi, Yi, Zi) and Pj (Xj , Yj , Zj ) and
radii Ri andRj havesij < 0. To make the calculations easier we work in local coordi-
nates. TakePi as the origin andPiPj as the direction of they axis. Thex andz axes
are in the plane throughPi normal toPiPj (see figure 1). For double overlap no further
specification is required. The equation of the surface of the sphereSi is

x2+ y2+ z2 = R2
i (3.2)

and that ofSj

x2 + (y − dij )2+ z2 = R2
j . (3.3)
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Figure 1. Local coordinate system to calculate the volume of overlap for two intersecting spheres.

Subtraction of (3.3) from (3.2) gives

2ydij − d2
ij = R2

i − R2
j (3.4)

so that the plane of intersection of the two spheres is given by

y = 1

2

{
dij +

R2
i − R2

j

dij

}
. (3.5)

The volume occupied by the two partially overlapping spheres is expressed as the
formula

VOij = Vi + Vj − VCij , (3.6)

where, in an obvious notation,VOij is the volume occupied by the spheresSi andSj , Vi

andVj are the volumes of the spheresSi andSj , respectively, andVCij is the common
volume. Vi andVj are given by (3.1). For the moment our concern is the calculation
of VCij .

To determine the volume of overlap,VCij , it is necessary to calculate the volumes
of the two caps of spheres into whichVCij is divided by the plane defined by (3.5).

A thin disc of radiusr and thickness dz (see figure 2) has the volume

dV = πr2 dz

and the volume of the cap of the sphere is

V =
∫ a

b

πr2 dz

=π

∫ a

b

(
a2− z2

)
dz

= 1

3
π (2a + b) (a − b)2 . (3.7)
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Figure 2. A sphere of radiusa and centred at the origin has a cap with base parallel to thexy-plane and
heightb above it (b can be a negative number).

We use the measurementsa and b as they are the ones which occur naturally in the
physical calculation, the radius of the sphere and the distance from the centre of the
sphere to the plane of intersection of the two spheres.

For the two spheres we have

ai = Ri, bi = 1

2

{
dij +

R2
i − R2

j

dij

}
,

aj = Rj , bj = 1

2

{
dij −

R2
i − R2

j

dij

}
,

(3.8)

and with (3.7) and (3.8) we obtain

VCij = 1

3
π

{[
2Ri + 1

2

(
dij +

R2
i − R2

j

dij

)][
Ri − 1

2

(
dij +

R2
i − R2

j

dij

)]2

+
[
2Rj + 1

2

(
dij −

R2
i − R2

j

dij

)][
Rj − 1

2

(
dij −

R2
i − R2

j

dij

)]2}
. (3.9)

However, we do not proceed now to calculateVOij from (3.6) as it is not necessary to
consider the contribution from pairs of overlapping spheres individually.
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Figure 3. The projection onto a plane of three overlapping spheres in the case that there is a region common
to all three spheres. The spheres areSi , Sj andSk with attributes labelled accordingly.

3.3. Three overlapping spheres

For those triplets of spheres with a common region of overlap we have to be careful
in the construction of the algorithm to avoid the chance of multiple addition or subtrac-
tion of the volume of a particular region.

The volume occupied by the three spheres represented in figure 3 is

VOijk = V1+ V2+ V3+ V4+ V5+ V6+ V7, (3.10)

whereVm refers to the volume of the region markedm (m = 1, . . . , 7) in figure 3.
Making a rearrangement of (3.10) we have

VOijk = (V1+ V4+ V7+ V6)+ (V2+ V5+ V7+ V4)+ (V3+ V6+ V7+ V5)

− (V4+ V7)− (V5+ V7)− (V6+ V7)+ V7

= Vi + Vj + Vk − (VCij + VCjk + VCki)+ VCijk . (3.11)

The important term in (3.11) isVCijk. This is the correction term needed to the idea of
subtraction ofVC from V when there is a triple overlap.

In the case of the overlap of two spheres only the linePiPj was of importance.
When there is the overlap of three spheres, the use of the planePiPj Pk simplifies the
calculations. We take the origin to be atPi (the atom we started with), they-axis to
be alongPiPj (Pj being the next atom treated) and thez-axis to be in the plane of
PiPj Pk and normal toPiPj (see figure 4). Thex-axis completes the right orthogonal
triad. In this coordinate system the centres of the spheres are located at(0, 0, 0) (Pi),
(0, bj , 0) (Pj ) and(0, bk, ck) (Pk), where
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Figure 4. Coordinate axes for three overlapping spheres. The origin is taken atPi , they-axis in the direction
of PiPj and thez-axis normal toPiPj in the planePiPj Pk . Thex-axis completes the right orthogonal

triad.

bj = dij ,

bk = PiPk · PiPj

dij

, (3.12)

ck = |PiPk × PiPj |
dij

.

The vectorsPiPk andPiPj and the distancedij are all calculated from global coordinates
and we adopt the convention that the centre ofSk is always in the upper half plane in the
local coordinate system.

In local coordinates the equations of the surfaces of the spheres are

Si: x2 + y2 + z2 = R2
i ,

Sj : x2 + (y − bj )2+ z2 = R2
j ,

Sk: x2 + (y − bk)2+ (z− ck)2 = R2
k .

(3.13)

Because of the way we have chosen the axes there is symmetry about theyz-plane.
The reason for this is thatSi has symmetry about the origin which contains symmetry
about they-axis which is the symmetry whichSj possesses and bothSi andSj have
symmetry about thexy-plane which is whatSk possesses. Hence, common toSi, Sj and
Sk is symmetry about theyz-plane. Although we do not know of an explicit formula to
calculate the volume of this region, we can make use of the symmetry about theyz-plane
to compute it. The region, the volume of which is to be computed, can be considered as
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Figure 5. The region for the evaluation ofAijk(x). The pointsQij , Qjk andQki are identified as those of
the points of intersection of any pair of (small) circles which lies within the third.

a series of thin trianglelike regions. If the area of one of these is given by the function
Aijk(x), the common volume is

VCijk =
∫ x0

−x0

Aijk(x) dx. (3.14)

To findAijk(x) we fix x which means that we take a plane parallel to theyz-plane.
We calculate the pointsQij , Qjk andQki which are three of the points of intersection
of the three (small whenx �= 0) circles (see figure 5). As the circles intersect pairwise
in two points, it is necessary to determine which of the two points is to be used. The
acceptable point must lie within the third (small) circle. Thus, ifx = xc andQij1,2 has
the coordinates(xc, ycij1,2, zcij1,2), we select that one ofQij1 andQij2 which satisfies

x2
c + (ycij − bk)2+ (zcij − ck)2 � R2

k . (3.15)

Once the three acceptable points are established, the area of the enclosed region is cal-
culated by means of the formula

Aijk =
∫ yij

yjk

(zj − zk) dy +
∫ yki

yij

(zi − zk) dy, (3.16)

where the limits of integration are given by they-ordinates ofQij , Qjk andQki and

zi =
[
R2

i − x2
c − y2]1/2

,

zj =
[
R2

j − x2
c − (y − bj )2]1/2

, (3.17)

zk = ck +
[
R2

k − x2
c − (y − bk)2]1/2

.
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Figure 6. Quadruple overlap. For the purposes of the general algorithm no assumptions are made about any
coincidences of the coordinates and radii of the spheres.

Although the integrals in (3.16) and (3.14) can be evaluated analytically by stan-
dard methods, the resultant formulae are so complicated as to be meaningless in a gen-
eral setting due to the necessity to label each representation of coordinates and radii by
identifying symbols and we do not write them down.

3.4. Multiple overlap

In the instances of rings such as cyclobutane, cyclopentadiene, benzene and cy-
clooctadiene the distance between the centroid of the ring and the centre of any of the
carbon atoms is less than the van der Waals radius of carbon. Hence, there can be over-
lap of four, five, six or even eight carbon atoms. Although this presents a complication,
the general algorithm is not more complicated than it is in the case of the triple overlap
of section 3.3. In figure 6 we depict the situation for the overlap of four spheres. The
situation for the other cases mentioned above is similar. A simple counting exercise of
the same type as in (3.11) shows that

VOijkl = Vi + Vj + Vk + Vl − (VCij + VCjk + VCkl + VCli)+ VCijkl . (3.18)

This notation is too cumbersome for larger rings. In general, we have

VO =
∑

α

Vα −
∑
αβ

VCαβ + VC, (3.19)

whereVO is the total space occupied,Vα is the volume ofSα, VCαβ is the volume common
to Sα andSβ given by (3.9) andVC is the volume common to all spheres.
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As before, we use a local coordinate system based on the first three spheres iden-
tified as overlapping. We assume that the labelling of the spheres has been done in an
anticlockwise fashion. We take a section parallel to and distantxc from theyz-plane.
In the case of identical spheres arranged in a plane the common area will be symmetric
with N vertices. However, this is not the case in general and we cannot make use of the
partial symmetry that we had in the triple overlap case. If the equations of the (small)
circles of the spheres in the plane distantxc from theyz-plane are

(y − bα)2+ (z− cα)2 = r2
α, α = 1, . . . , N, (3.20)

where

r2
α = R2

α − (xc− aα)2, (3.21)

the coordinates of the vertices of the common region are the real roots of the pairwise
solutions of (3.20) (β) and (3.20) (β + 1) which satisfy

(y − bα)2+ (z − cα)2 � r2
α, α �= β, β + 1. (3.22)

Although in principle it is possible to write an analytic expression for the area of the
section, it is not a feasible proposition to do so in a general algorithm. The vertices of
the regionQαβ have been identified. Let them be ordered from the minimum value ofy

to the maximum in two sequences, one giving the upper vertices of the common section
and the other giving the lower vertices. The area of the common section is given by

AC(xc) =
∑

(z+ − z−)δy, (3.23)

wherez+ is on the arc of the small circle which marks the current upper boundary and
z− is on the lower one. The circles contributing the arcs change asy passes through each
vertex of the section. Upper and lower arcs change independently. The step lengthδy

can be chosen to give the accuracy desired. AfterAC(xc) is evaluated for a givenxc, the
value ofxc is increased and the process repeated.

The volume is given by

VC =
∑

AC(x)δx, (3.24)

where the summation is best started atx = 0 and moved outwards in both positive and
negative directions to those values ofx for which the testing of the existence of overlap
shows that it is no longer multiple or triple.

The procedure described above for the overlap ofN dissimilar spheres is heavy
on computation because it is necessary to solve the set of equations (3.20) pairwise
for each value ofxc and then verify the inequalities (3.22). In the case of like spheres
symmetrically arranged we may make use of this symmetry to obtain the volume less
expensively. The procedure is common to all cases of multiple overlap which exhibit
CN symmetry, whereN is the number of spheres. In figure 7 we illustrate it for cyclobu-
tane.



P.G.L. Leach et al. / Effective volumes of molecules 371

Figure 7. Common section of a four sphere overlap representing the four carbon atoms of cyclobutane. In
general the common region is anNgon plusN equal segments of circles.

Let the radius of each sphere beR and the radius of each small circle distantxc

from theyz-plane ber. In figure 7AD = r andAB = ρ. The area of the segment
CDEF is

AS = 1

2
r2(2θ − sin 2θ). (3.25)

The area of the triangleBCD is

AT = 1

2
BC · CD = 1

2
(r cosθ − ρ)2 tanφ. (3.26)

From the application of the cosine rule to the triangleABD

BD = ρ cosφ +
√

r2 − ρ2 sin2 φ. (3.27)

Application of the sine rule to the triangleABD gives

sinθ = BD

r
sinφ. (3.28)

For anNgon

φ = π

N
, (3.29)
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and the total area of the section is

A = N(AS+ 2NAT). (3.30)

The common volume is

VC = 2
∫ x1

0
A dx, (3.31)

where

x1 =
√

R2− ρ2. (3.32)

The integral can be evaluated when the substitutionr = √R2− x2 is made. The distance
from ring centroid to sphere centre isρ.

4. The interstitial void

When groups of atoms clump together, there may be enclosed space amongst them,
the interstitial void, which, although it is not material volume, contributes to the total
volume occupied by the molecule or portion thereof.

4.1. The tetrahedral interstitial void

The tetrahedral interstitial void occurs when three atoms lie in a plane with another
sitting on top and a fifth placed underneath. We assume that the enumeration of overlap
classes of section 2 has been performed. We identify the existence of a tetrahedral inter-
stitial void as follows. IfSi has overlap or contact withSj , Sk, Sl andSm, likewise for
Sj andSk, andSl andSm do not have contact or overlap, there is a tetrahedral interstitial
void contained within the five atoms. The coordinate system is as defined by figure 8
with the origin being atPi , they-axis alongPiPj and thez-axis normal toPiPj in the
planePiPj Pk . Thex-axis completes the orthogonal triad.

Si, Sj andSk are treated for triple overlap (if this is likely to happen) as in sec-
tion 3.3. This determines whether the integration starts fromx = 0 if there is no triple
overlap or fromx = x0 if there is. A plane section of the tetrahedral interstitial void
parallel to theyz-plane can have one of the possible shapes depicted in figure 9.

In figure 9(a) the spheres closing off the tetrahedral interstitial void do not intrude
into the region and the section is roughly triangular. In figure 9(b) a section of one of
them (a small circle) is contained within the triangular region. In figure 9(c) the same
section now overlaps one or more ofSi, Sj andSk. The area of the triangular region
Bijk(x) is calculated by a formula very similar to (3.16), viz.

Bijk(xc) =
∫ yjk

yki

(zk − zi) dy +
∫ yij

yjk

(zk − zj ) dy, (4.1)

where the limits of integration are given by they-ordinates ofQij , Qjk andQki , zi, zj

andzk are given by (3.17) andxc is the distance of the plane from theyz-plane. Suppose



P.G.L. Leach et al. / Effective volumes of molecules 373

Figure 8. Tetrahedral interstitial void: a cross-section parallel to theyz-plane.

Figure 9. Tetrahedral interstitial void: (a) the closing off sphere does not intrude; (b) it intrudes, but is
contained within the region; (c) it overlaps part of the outside region.

that thex-ordinate ofPl is positive and that ofPm is negative. Forxc > 0 we test the
equation forSl, viz.

(x − al)
2+ (y − bl)

2+ (z− cl)
2 = R2

l , (4.2)

to determine ifSl intrudes into the triangular region. This occurs when

(y − bl)
2+ (z − cl)

2 = R2
l − (x − al)

2 > 0. (4.3)
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The area of this circle is

Al(xc) = πr2
l , (4.4)

where

r2
l = R2

l − (x − al)
2. (4.5)

It is necessary to test for possible overlap as depicted in figure 9(c). This is done by
finding the points of intersection of

(y − bl)
2+ (z − cl)

2 = r2
l (4.6)

with

y2+ z2 = r2
i , (4.7)

(y − bj )2+ z2 = r2
j , (4.8)

(y − bk)2+ (z− ck)2 = r2
k , (4.9)

whererl, rj andrk are defined similarly torl in (4.5), in turn. Suppose that these occur
at pointsTi1 andTi2 on Si, Tj1 andTj2 on Sj andTk1 andTk2 on Sk. The portion of the
area of the circle over-counted with each sphere is given by

Clα(xc) = 1

2
r2
l , (4.10)

where

θl = lα12

rl

, (4.11)

θα = lα12

rα

, (4.12)

lα12= (yα2− yα1)
2+ (zα2− zα1)

2, (4.13)

andα ranges over the indicesi, j andk. The actual area at each value ofxc is given by

Dijkl(xc) = Bijk(xc)− AC(xc)+
∑

α=i,j,k

Clα(xc). (4.14)

The volume of the tetrahedral interstitial void contributed by the presence ofSl is given
by

Vijkl =
∫ xl

x0

Dijkl(x) dx, (4.15)

wherexl is the value ofxc for which the pointsQij , Qjk andQki are contained within
the circle which is tested by the inequality

(yα − bl)
2+ (zα − cl)

2 < r2
l (4.16)
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for α = i, j, k andx0 is either zero (no triple overlap ofSi, Sj andSk) or the upper
limit of the integral in (3.14). Likewise the volume of the tetrahedral interstitial void
contributed bySm is given by

Vijkm =
∫ −x0

xm

Dijkm(x) dx (4.17)

in an obvious notation. Note that there is symmetry about theyz-plane for thex0 bound
of integration, but not the other asSl andSm need not have the same radii.

4.2. The octahedral interstitial void

The second type of interstitial void is called the octahedral interstitial void and
occurs when four spheres are arranged more or less in a plane and spheres top and
bottom close off the region. We must firstly identify when the octahedral interstitial
void arises. It occurs when, of a group of six spheres, each one has overlap or contact
with four others. The distinction between a tetrahedral interstitial void and an octahedral
interstitial void is that the former is a group of five spheres whereas the latter is a group
of six spheres.

We establish local coordinates using the centres ofSi , Sj andSk as before. Unlike
the case of a tetrahedral interstitial void there is no real distinction to be made amongst
the spheres. Any of the six could be taken forSi, Sj andSk and we may as well take
Si, Sj andSk in the order they are found to be elements of the group. The other spheres
areSl, Sm andSn. Let |xl | < min |xm|, |xn| so thatSl is the sphere closest to the plane
defined byPiPj Pk. Sk and Sl are taken in anticyclic order as indicated in figure 10.
(This may involve a relabelling ofSk andSl.) To identify Sm andSn we takeSm to be
the sphere with thex-ordinate ofPm positive andSn to be the sphere with thex-ordinate
of Pn negative, i.e.Sm is on the positivex side of theyz-plane andSn is on the negative
side.

In figure 10 we illustrate a section parallel to theyz-plane and distantxc from it.
The small circles of the spheres intersect atQij , Qjk, Qkl andQli. We can no longer
assume that they-ordinate of the intersection ofSi andSj provides a suitable division of
the region as was the case for the tetrahedral interstitial void in section 4.1. Instead we
use the line joiningQli andQjk with equation

z − zjk

y − yjk

= zli − zjk

yli − yjk

. (4.18)

Then the area of the section of the octahedral interstitial void atxc is given by

Eijkl (xc)=
∫ ykl

yli

(zl − zp) dy +
∫ yjk

ykl

(zk − zp) dy

+
∫ yij

ykl

(zp − zi) dy +
∫ yjk

yij

(zp − zj ) dy, (4.19)
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Figure 10. Octahedral interstitial void: a section of the four spheresSi , Sj , Sk and Sl parallel to the
yz-plane.

wherezi, zj andzk are defined by (3.17),

zp = zjk + zli − zjk

yli − yjk

(y − yjk) (4.20)

from (4.18) and

zl = cl −
[
R2

l − (xc − al)
2− (y − bl)

2
]1/2

. (4.21)

As in the case of the tetrahedral interstitial void, the top and bottom spheres may
intrude into this area in a manner similar to that depicted in figure 11(b) and (c). For the
top sphere we have the equivalent to (4.4), viz.

Am(xc) = πr2
m (4.22)

which is added when

(y − bm)2+ (z− cm)2 = R2
m − (xc − am)2 > 0, (4.23)

and, as in (4.5), we have

r2
m = R2

m − (xc − am)2. (4.24)

The existence of any overlap of the type illustrated in figure 11(c) is determined by
finding whether the small circle

(y − bm)2+ (z − cm)2 = r2
m (4.25)
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Figure 11. Octahedral interstitial void: the small circles intersect at the pointsQij , Qjk , Qkl andQli which
mark the region belonging to the octahedral interstitial void: (a) the closing off sphere does not intrude into
the region; (b) it intrudes into the region, but is contained within the region; (c) it overlaps part of the outside

region.

has real points of intersection with each of the small circles

y2 + z2 = r2
i ,

(y − bj )2+ z2 = r2
j ,

(y − bk)2+ (z − ck)2 = r2
k ,

(y − bl)
2+ (z − cl)

2 = r2
l ,

(4.26)

in turn. With the same notation as in section 4.1 the area of overlap is denoted by
Cmα(xc), whereα now ranges overi, j , k andl.

The actual area of the section of the octahedral interstitial void at each value ofxc

is

Fijklm(xc) = Eijkl(xc)− Am(xc)+
∑

α=i,j,k,l

Cmα(xc). (4.27)

In (4.27)Am(xc) andCmα(xc) are taken to be zero when they make no contribution to
the area.

Finally the volume contributed by the octahedral interstitial void on the positivex

side of theyz-plane is

Vijklm =
∫ xm

0
Fijklm(x) dx. (4.28)

In a similar fashion the volume contributed by the octahedral interstitial void on the
negativex side of theyz-plane isVijkln.
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Table 1
The contributions to the nett volume of selected molecules.

Molecule Shape Volume/10−30 m3

Gross Pairwise Multiple Interstitial Nett
volume overlap overlap voids volume

HF linear 16.48 3.40 0 0 13.08
F2 linear 22.99 3.54 0 0 19.45
OF2 angular 34.98 8.14 1.05 0 27.89
BF3 planar 53.30 12.71 0.79 0 41.38
NF3 trigonal pyramidal 47.52 10.89 1.97 0 38.60
CF4 tetrahedral 60.98 12.26 1.05 0 49.77
PF5 trigonal bipyramidal 84.42 27.11 1.76 0 59.07
SF6 octahedral 93.39 38.09 7.42 0 62.73

5. The total volume

When all of the volumes of the regions of double, triple and multiple overlaps
together with the contributions from any interstitial voids are added, the total volume
occupied by the molecule, in an extension of the notation of section 3.4, is given by

V =
∑

α

Vα −
∑
αβ

VCαβ + VC+ VT + VO, (5.1)

whereVT is the total contribution from tetrahedral interstitial voids andVO is the total
contribution from octahedral interstitial voids, i.e. from the sum of the volumes of the
spheres is subtracted the total of the pairwise overlaps and added the total of then-tuple
overlaps and the contributions from possible interstitial voids.

6. Conclusion

We illustrate the computations of molecular volumes by means of the algorithm de-
veloped here with a series of simple covalently-bonded fluorides. These molecules cover
the basic shapes found in simple molecules and radicals. They are, with the geometric
shape in brackets after the name, hydrogen fluoride (linear), fluorine (linear), oxygen
difluoride (angular), boron trifluoride (planar), nitrogen trifluoride (trigonal pyramidal),
carbon tetrafluoride (tetrahedral), phosphorus pentafluoride (trigonal bipyramidal) and
sulphur hexafluoride (octahedral). For the purposes of this calculation we used the co-
valent bond lengths given by Bondi [19].

In the tabulated volumes (see table 1), which are ordered in terms of increasing
number of fluorine atoms attached to the “central” atom, one may at first be surprised
that the volume of the planar BF3 is greater than that of the pyramidal NF3. However,
one should bear in mind that the atomic radius of boron is 165 pm while that of nitro-
gen is 146 pm [19]. Consequently, the volume of BF3 is almost 50% greater than that
of NF3.
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An analytical algorithm for the calculation of molecular volumes has been pre-
sented. The implementation in Mathematica may be obtained from one of the authors
(PGLL at leachp@nu.ac.za). The algorithm addresses the shortcomings of previous al-
gorithms as it takes into accountn-tuple overlap of atoms as well as interstital voids.
The final formula, (5.1), is very simple and easy to implement and it allows the practi-
tioner to decide whether or not to exercise the option of inclusion of the calculation of
interstitial voids and their contribution to the molecular volume. In the cases of the sim-
ple compounds listed above the calculation has shown that interstitial voids do not exist,
whence their zero volumes. However, these are particularly simple molecules and one
should not be tempted summarily to ignore the probable presence of interstitial voids in
more complex molecules.
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